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Introduction
Random walks are a statistical tool, used to study patterns
in randomness. They can be applied over a finite space (typ-
ically a graph) or an infinite continuum.
Quantum (random) walks are the quantum equivalent of
classical random walks. They are studied to observe the
statistical properties of quantum systems. These results
aid in the general design of randomised quantum algo-
rithms, particularly regarding efficiency concerns for those
algorithms[1].
Much of the work concerning discrete quantum walks deals
with two-state bits, known as qubits. At each time step in
a qubit system the particle must move. Our work looks at
three-state systems, whose particles are known as qutrits.
In a qutrit system the particle is not forced to move at each
time step; there is a possibility that it can remain in the same
location. This possibility to remain in place gives rise to the
name “lazy” quantum walks.
This poster describes work in progress on this topic.

Classical Walks
The most approachable application of a discrete classical
random walk is a fair coin toss, the result of which moves
a particle left or right on an infinite line. After this exper-
iment has been run a number of times, the distance from
the origin is recorded. This series of experiments is then
run a number of times, and the distance from the origin is
recorded each time. When a histogram of these results is
plotted, we see that the distribution of distances from the
origin is approximately normal (Figure 1). As the parti-
cle can only land on an odd numbered space after an odd
number of steps and an even numbered space after an even
number of steps, over a larger number of steps every second
value will be zero.
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Figure 1: Histogram of final positions, 10,000 iterations
of 100-step classical walk.

This can be generalised to show the probability of the par-
ticle being at a certain position after a certain number of
steps[1].
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Figure 2: The probability of being at node i after T
steps of the classical random walk on the line starting

in 0.
However, on a closed graph the probabilities converge over
time. On a cyclic graph with 4 nodes, where we can move
clockwise or counter-clockwise after each time-step, the
probabilities converge to 1

4 for each of the four nodes.
We now consider a three state system on the integers. A
particle can move left, right or remain stationary at each
time step. Figure 3 shows the generalised probability dis-
tributions of a lazy classical walk.
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Figure 3: The probability of being at position i after T
steps of the lazy classical random walk on the line

starting in 0.

The lazy classical walk has a normal distribution; the in-
troduction of the lazy step removes the odd/even restric-
tion. Like the standard classical walk, the lazy classical
walk converges to equal values on a closed graph.
It is possible to vary the lazy bias of a classical walk. A
common bias is to choose a probability per iteration of 1

2

for the lazy move, 1
4 for the clockwise move, and 1

4 for the
counter-clockwise move. This bias can be modelled as two
coin tosses, where one coin signals movement or its ab-
sence, the second signals the direction of movement (if the
first coin signals movement).
However, we have chosen to give each movement possi-
bility a probability of 1

3. This is for comparison with the
quantum randomization function we will be examining.

Hadamard Gate
The quantum randomizing function we are examining is
known as a Hadamard Gate (also known as a Hadamard
Coin). A coin used for a two-state (qubit) system is H2

H2 =
1√
2

(
1 1
1 −1

)
(1)

It is unitary and has been shown[1] to be fair.
The Hadamard gate has been generalised by Marttala[2] to
Hm, where m is the number of states in the system.
As we are interested in a lazy walk we want a three-state
gate H3, where the three states represent a left movement, a
right movement, and no movement.

H3 =
1√
3

1 1 1

1 −(−1)13 (−1)23
1 (−1)23 −(−1)13

 (2)

We are satisfied that H3 is unitary as

H3H
†
3 = I3 (3)

Quantum Walks on a Graph
A Lazy One-Dimensional Discrete Quantum Walk takes
place on the state space spanned by vectors

|n, p〉 (4)

where n ∈ Z and p ∈ {0, 1, 2} is a three-state variable. n
represents the position of a particle on the walk and is the
walk’s classical component. p is the quantum component; it
is typically a two-state spin, but we have added a third state
to represent our lazy state.
One step of the walk is given by the transitions

|n, 0〉 −→ a |n, 0〉 + b |n + 1, 1〉 + c |n− 1, 2〉 (5)
|n, 1〉 −→ d |n, 0〉 + e |n + 1, 1〉 + f |n− 1, 2〉 (6)
|n, 2〉 −→ g |n, 0〉 + h |n + 1, 1〉 + i |n− 1, 2〉 (7)

where a b c
d e f
g h i

 = H3 (8)

This has been expanded from the two-state walk equations
given elsewhere[1, 3].
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Figure 4: State transition diagram for cycle of length
four.

Multiple randomising iterations were performed for a cyclic
graph with four nodes and no directional biasing. Different
initial states were used to obtain a variety of results. A non-
lazy walk on a cycle with four nodes was also analysed for
comparison to the lazy results.

Results
The non-lazy cycle converges to 1

4 for each vertex. This
is due to the fact that the nodal probabilities repeat after 8
steps, caused by constructive and destructive interference
on the graph.
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Figure 5: The probability of being at position i after T
steps of the quantum random walk on a cycle with four

nodes, starting at |0, 0〉.
As a result, the nodal probabilities converge to equal values
for all nodes on a four node cycle for a classical walk, lazy
and non-lazy, and a non-lazy quantum walk. However, the
nodal probabilities do not converge to equal values for the
lazy quantum walk on a cyclic graph with four nodes.
We define our initial state as

x |0, 0〉 + y |0, 1〉 + y |0, 2〉 (9)

y =

√
1− x2

2
(10)
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Figure 6: Final value of nodal probability for each node
in a 4 node cycle after a number of iterations of the lazy
quantum walk, with x varying from −1 to 1. Values are

for Node 0 (dashed), 1 & 3 (solid), and 2 (dotted).
Results are for 100(top left), 500(top right), and

2000(bottom) iterations.
Minimum Probability Maximum Probability
x-value Probability x-value Probability

Node 0 -0.464476 0.277144 0.885579 0.313895
Node’s 1& 3 0.887671 0.186246 -0.460463 0.223129

Node 2 -0.45647 0.276597 0.889731 0.313614

Figure 7: The maximum and minimum positional
probabilities for each position after 2000 iterations.

Conclusion and extensions
The Hadamard gate is commonly considered to be fair and
balanced. It produces some results equal to those obtained
from a fair classical coin, and some different.
We have investigated initial states with real coefficients, but
intend on also looking at the results when complex coeffi-
cients are used.
We have only investigated a cycle with four nodes. The
profile of x vs. probability values may be unique to a lazy
quantum walks on a cycle with four nodes, an odd number
of nodes or may be common to all graphs. We intend on
investigating cycles with more vertices.
The values for Position 0 and 2 look likely to converge. We
intend to investigate if these positional profiles do converge.
We also intend to find the maximum and minimum cumu-
lative probabilities for each vertex.
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